Rapid Multi-Damage Identification for Health Monitoring of Laminated Composites Using Piezoelectric Wafer Sensor Arrays

نویسندگان

  • Liang Si
  • Qian Wang
چکیده

Through the use of the wave reflection from any damage in a structure, a Hilbert spectral analysis-based rapid multi-damage identification (HSA-RMDI) technique with piezoelectric wafer sensor arrays (PWSA) is developed to monitor and identify the presence, location and severity of damage in carbon fiber composite structures. The capability of the rapid multi-damage identification technique to extract and estimate hidden significant information from the collected data and to provide a high-resolution energy-time spectrum can be employed to successfully interpret the Lamb waves interactions with single/multiple damage. Nevertheless, to accomplish the precise positioning and effective quantification of multiple damage in a composite structure, two functional metrics from the RMDI technique are proposed and used in damage identification, which are the energy density metric and the energy time-phase shift metric. In the designed damage experimental tests, invisible damage to the naked eyes, especially delaminations, were detected in the leftward propagating waves as well as in the selected sensor responses, where the time-phase shift spectra could locate the multiple damage whereas the energy density spectra were used to quantify the multiple damage. The increasing damage was shown to follow a linear trend calculated by the RMDI technique. All damage cases considered showed completely the developed RMDI technique potential as an effective online damage inspection and assessment tool.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Piezoelectric Wafer Active Sensors for Structural Health Monitoring of Composite Structures Using Tuned Guided Waves

Piezoelectric wafer active sensors (PWAS) are lightweight and inexpensive transducers that enable a large class of structural health monitoring (SHM) applications such as: (a) embedded guided wave ultrasonics, i.e., pitch-catch, pulse-echo, phased arrays; (b) highfrequency modal sensing, i.e., the electro-mechanical (E=M) impedance method; and (c) passive detection (acoustic emission and impact...

متن کامل

Structural Health Monitoring

An experimental evaluation of the structural health monitoring capability of piezoelectric wafer active sensors on composite structures at cryogenic temperatures is presented. The piezoelectric wafer active sensor–based electromechanical impedance and the pitch–catch methods were first qualified for cryogenic temperatures using piezoelectric wafer active sensor–instrumented composite specimens ...

متن کامل

Embedded Active Sensors for In-situ Structural Health Monitoring of Aging Aircraft Structures

The aging of aerospace structures is a major current concern of civilian and military aircraft operators. Piezoelectric active sensors offer special opportunities for developing sensor arrays for in-situ health monitoring of aging aircraft fleet, because they are small, non-invasive, inexpensive and easily wired into sensor arrays. This paper presents work done on developing and utilizing piezo...

متن کامل

A Pitch-Catch Based Online Structural Health Monitoring of Pressure Vessels, Considering Corrosion Formation

Structural health monitoring is a developing research field which is multifunctional and can estimate the health condition of the structure by data analyzing and also can prognosticate the structural damages. Illuminating the damages by using piezoelectric sensors is one of the most effective techniques in structural health monitoring. Pressurized equipments are very important components in pro...

متن کامل

Damage detection and structural health monitoring of ST-37 plate using smart materials and signal processing by artificial neural networks

Structural health monitoring (SHM) systems operate online and test different materials using ultrasonic guided waves and piezoelectric smart materials. These systems are permanently installed on the structures and display information on the monitor screen. The user informs the engineers of the existing damage after observing signal loss which appears after damage is caused. In this paper health...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016